Auszug aus

Methode zur Sicherheitsnachweisführung einer bordautonomen satellitenbasierten Ortungseinheit für den Schienenverkehr

Von der Fakultät für Maschinenbau

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: Dipl.-Ing. Hansjörg Manz

aus: Dresden

eingereicht am: 11.02.2016 mündliche Prüfung am: 04.05.2016

Gutachter: Prof. Dr.-Ing. Dr. h.c. mult. Eckehard Schnieder

Prof. Dr.-Ing. Jochen Trinckauf

Vorsitzender: Prof. Dr.-Ing. Peter Hecker

Kurzfassung

Mit dieser Arbeit wird ein Beitrag zur Steigerung der Attraktivität des Schienenverkehrs durch den Wechsel von traditioneller streckenseitiger auf satellitenbasierte fahrzeugseitige Ortung geleistet. Hierbei wird eine Grundlage für den Entwicklungsprozess für die Selbstortung des Schienenfahrzeugs ohne streckenseitige Einrichtungen oder Aktivitäten des Fahrers erstellt, um die Zertifizierung und Typzulassung einer bordautonomen, mit ETCS Level 3 konformen satellitenbasierten Ortungseinheit für den Schienenverkehr zu erreichen.

Anstelle der momentan im Schienenverkehr üblichen diskreten Zugortung können mit Einführung der satellitenbasierten kontinuierlichen Ortung eine Vielzahl an Vorteilen durch einen effizienteren Betrieb und den Verzicht auf streckenseitige Ortungskomponenten sowie Signalisierung ermöglicht und realisiert werden.

Die hier konzipierte Ortungseinheit muss für eine Zertifizierung entsprechend dem gültigen normativen Rahmen entwickelt werden. Dafür werden der normative Rahmen und dessen historische Entwicklung analysiert und die beteiligten Organisationen im Normerstellungsprozess sowie die Entwicklungsprozesse in Europa betrachtet. Um die Ergebnisse dieser Arbeit auch weltweit für Entwicklungsprozesse nutzen zu können, wird auch der internationale normative Rahmen fokussiert. Darauf aufbauend soll die und Zertifizierung der satellitenbasierten Begutachtung Ortungseinheit Schienenverkehr durchgeführt und der Prozess nachvollzieh- und wiederholbar werden. Die satellitenbasierte Zugortung soll dargestellt in moderne Zugbeeinflussungssysteme eingebunden werden und ist somit nicht separat einsetzbar. Für die somit notwendige Integration wird hier die Grundlage gelegt, die Umsetzung erfolgt durch ein modulares Modellkonzept für die Schnittstellen.

Um eine klar strukturierte Darstellung zu ermöglichen, wird ein terminologisch konsistentes Vorgehen eingeführt und genutzt. Der Fokus liegt dabei auf für die Entwicklung und Zertifizierung relevanten Termini, was zum Verständnis und für eine konsistente Durchführung notwendig ist. Dies ist die Basis für die sichere Systementwicklung und die damit verknüpfte Zertifizierung für ein System mit eindeutigen Systemgrenzen. Diese werden hier eingeführt und sind notwendig, um festzulegen, für welche Teile die Sicherheitsanalyse zutreffend und anzuwenden ist. Dieses Vorgehen ermöglicht es, frühzeitig Probleme und Schwierigkeiten zu erkennen, adäquate Lösungen zu erarbeiten und diese in den Entwicklungsprozess einbinden zu können. Die dafür erforderlichen Prozesse werden zunächst allgemein dargestellt und darauf aufbauend auf die Zertifizierung angewandt, die der Nutzung der satellitenbasierten Ortung im Schienenverkehr zugrunde liegt.

Abstract

This thesis contributes to a more attractive railways by enhancing the change from traditional track side to satellite based vehicle self-localisation. The development process for the self-localisation of a rail vehicle without track side infrastructure and activities of the driver is created to reach the certification and type approval of a board autonomous localisation unit for railways compatible with ETCS level 3.

Instead of the currently used discrete localisation in railways the advantages of satellite based localisation can be used for a continuous localisation. This leads to various benefits by an efficient operation and the abandonment of track side localisation as well as signalling components.

The localisation unit designed in this thesis has to be developed for a certification according the normative background which is therefore analysed. Furthermore the historical background of the normative background is analysed and the participating organisations in the creation of a norm as well as the development process in Europe are focused. To use the results of this work for worldwide development processes, the international normative background is focused as well. On this basis, the certification and assessment of the satellite based localisation unit for railways is carried out with consistent and comprehensive process. The satellite based train localisation is integrated in modern train control system and can therefore not be used separately. For the necessary integration the fundamental work is done, the implementation is carried out by a modular model concept for the interfaces.

To enable a clear structured description, a terminologically consistent approach is introduced and used. The focus is on the terms relevant for development and certification to enhance the comprehensibility and for a consistent implementation. This work is the basis for a safe system development and the connected certification with a clearly structured system. These are introduced here and are necessary to know the relevant parts for the safety analysis. This approach enables to identify potential problems and difficulties early and to adopt adequate solutions to be included in the development process. The necessary processes are introduced in general and subsequently applied to the certification of the satellite based localisation in railways.

Inhaltsverzeichnis

V	orwor	t		III	
K	urzfas	sung		V	
A	bstrac	t		VI	
In	haltsv	erzeich	nis	VII	
V	erzeic	hnis dei	r Abkürzungen und Akronyme	XIII	
	lossar				
1	1.1	U	sforderungen im Schienenverkehr und mögliche Potenziale		
	1.1	1.1.1	Interoperabilität des Schienenverkehrs in Europa		
		1.1.2	Wirtschaftlicher Betrieb von Nebenstrecken		
		1.1.3	Verzicht auf streckenseitige Infrastruktur		
		1.1.4	Erhöhung der Streckenkapazität		
		1.1.5	ETCS als europäisches Zugbeeinflussungssystem		
		1.1.6	Ansatz, Problemstellung		
	1.2	Abgre	nzung der Arbeit und Vorarbeiten	5	
	1.3	Ziele d	lieser Arbeit	6	
		1.3.1	Teilziel A: Konsistente Darstellung der Systemarchitektur	7	
		1.3.2	Teilziel B: Sicherheitsgerichteter Entwicklungsprozess	8	
		1.3.3	Teilziel C: Nachweis der sicheren Funktionalität		
	1.4	Strukt	ur dieser Arbeit	9	
2	Stand	d der Fo	orschung und Technik in Zugbeeinflussung und Ortung	11	
	2.1 Leitsysteme zur Steuerung des Verkehrssystems Eisenbahn				
		2.1.1	Einführung Zugbeeinflussungssysteme	11	
		2.1.2	Gliederung der Zugbeeinflussungssysteme	12	
		2.1.3	Entwicklung und Anwendung der Zugbeeinflussung in Europa	12	
		2.1.4	Wandel zur europäischen Zugbeeinflussung	14	
		2.1.5	Technische Umsetzung von ETCS		
		2.1.6	Nutzung von ETCS in Europa		
	2.2	_	tionsprozesse im Schienenverkehr		
		2.2.1	Durchführung der Migration		
		2.2.2	Prozess der Migration		
		2.2.3	Besonderheiten der Migration von Zugbeeinflussungssystemen		
	•	2.2.4	Migration zwischen verschiedenen ETCS Leveln		
	2.3	•	g im Schienenverkehr		
		2.3.1	Klassifikation von Ortungsmethoden		
		2.3.2	Fahrzeugseitige kontinuierliche Ortung		
		2.3.3	Strukturierung der zur Ortung verwendeten Sensoren		
		2.3.4	Fahrzeugseitige Sensoren und digitale Karte	23	

		2.3.5	Stand der Nutzung von GNSS im Schienenverkehr	24
		2.3.6	In Betrieb befindliche satellitenbasierte Zugbeeinflussungssysteme	25
		2.3.7	Konzepte satellitenbasierter Zugbeeinflussungssysteme	26
	2.4	Satelli	tenbasierte Sensorik	27
		2.4.1	Satellitenbasierte Ortung	28
		2.4.2	Funktionsweise und technische Aspekte der GNSS	29
		2.4.3	Weltweite GNSS	30
		2.4.4	Galileo	31
		2.4.5	Erhöhung der Genauigkeit	32
		2.4.6	Weltweite Ergänzungssysteme	33
		2.4.7	Anwendungen der Luftfahrt	33
	2.5	Integra	ation und Zertifizierung der satellitenbasierten Ortung	35
		2.5.1	Generische Zertifizierung satellitenbasierter Ortungssysteme	35
		2.5.2	Domänenspezifische Zertifizierung satellitenbasierter Ortung	37
		2.5.3	Zertifizierung industrieller Komponenten für den Schienenverkehr	37
3	Norn	nativer l	Rahmen	39
	3.1		cklung normativer Dokumente	
		3.1.1	Beteiligte Organisationen am Normerstellungsprozess	
		3.1.2	Beteiligte Organisationen im Gesetzgebungsprozess	
		3.1.3	Beteiligte Interessenverbände	
		3.1.4	Wandel der europäischen Legislative	
		3.1.5	Wandel des sicherheitsgerichteten Entwicklungsprozesses	44
		3.1.6	Einfluss des rechtlichen Wandels auf die Entwicklung und Zertifizierung	44
	3.2	Zugrui	nde liegende Dokumente des normativen Rahmens	
		3.2.1	Allgemeine Industrienormen	
		3.2.2	Normen der Systemklassifikation	
		3.2.3	Grundlegende Normen des Schienenverkehrs	
		3.2.4	Grundlegende Spezifikationen des Schienenverkehrs	
		3.2.5	Dokumente des Herstellers und Betreibers	
		3.2.6	Internationale Dokumente der Entwicklung im Schienenverkehr	51
	3.3	Sicher	heitsnachweisführung	
		3.3.1	Begriffsdefinitionen	52
		3.3.2	Sicherheitsnachweis in der Luftfahrt	
		3.3.3	Sicherheitsnachweis im Schienenverkehr in Europa	54
		3.3.4	Einfluss der TSI auf Entwicklung und Zertifizierung	58
		3.3.5	Sicherheitsnachweis im Schienenverkehr weltweit	58
		3.3.6	Domänenübergreifender Ansatz	
		3.3.7	Strukturierung der Sicherheitsnachweisführung	
		3.3.8	Zusammenfassung der Ansätze	
	3.4	Norma	tive Anforderungen im Schienenverkehr	

		3.4.1	Risikoakzeptanzkriterien im Schienenverkehr	62
		3.4.2	Normative Anforderungen an Komponenten im Schienenverkehr.	63
		3.4.3	Normative Anforderungen an den Entwicklungsprozess	64
		3.4.4	Normative Anforderungen an den Entwicklungsprozess (international)	65
		3.4.5	Durchführung der sicheren Systementwicklung	67
		3.4.6	Nachweiskonzeption	68
		3.4.7	Normkonforme entwicklungsbegleitende Dokumentation	71
		3.4.8	Inbetriebnahmegenehmigung	72
4	Entw	vicklung	g sicherer Systeme und Systemstrukturierung	73
	4.1		cklung technischer Systeme im Schienenverkehr	
		4.1.1	Generischer sicherheitsgerichteter Entwicklungsprozess	
		4.1.2	Domänenunabhängige Verantwortlichkeiten	
		4.1.3	Personelle und institutionelle Unabhängigkeiten nach Sicherheitsstufe	
		4.1.4	Verantwortlichkeiten im Entwicklungsprozess	77
		4.1.5	Verantwortlichkeiten während der Zertifizierung	79
	4.2	Grund	lagen der Strukturierung eines technischen Systems	81
		4.2.1	Herausforderungen der Systemstrukturierung	82
		4.2.2	Grundlegende Definitionen	82
		4.2.3	Eigenschaften des Systembegriffs	83
		4.2.4	Bedeutende Aspekte der Erstellung der Systemarchitektur	84
	4.3	Ansätz	ze zur Durchführung der Systemstrukturierung	84
		4.3.1	Funktionsbezogene Struktur	85
		4.3.2	Produktbezogene Struktur	87
		4.3.3	Ortsbezogene Struktur	88
		4.3.4	Integrierte Struktur	90
5	Strul	kturieru	ng der Anforderungsspezifikationen	91
	5.1		derungen an Betrieb und Instandhaltung	
		5.1.1	Generische Darstellung der Anforderungen an Anwendungen	
		5.1.2	Strukturierung der Funktionen im Schienenverkehr	92
		5.1.3	Zusammenfassung	95
	5.2	Anfor	derungen an Stilllegung und Entsorgung	96
	5.3		derungen an Betrieb mit externen Einflüssen	
6	Strul	kturieru	ng der Sicherheitsanforderungsspezifikationen	97
	6.1		ellen der Sicherheitsanforderungen	
		6.1.1	Anforderungen an Systemkomponenten	
		6.1.2	Anforderungen entsprechend des Funktionsaspekts	
		6.1.3	Resultierende Anforderungen an die Ortungseinheit	
		6.1.4	Anforderungen an den Entwicklungsprozess	
		6.1.5	Anforderungen an durch Sensoren gelieferte Informationen	

		6.1.6	Technis	che Sicherheitsanforderungen	105
	6.2	Anford	lerungen	an Sicherheitsüberwachung im Betrieb	106
	6.3	Anford	lerungen	an Stilllegung und Entsorgung	106
	6.4	Anford	lerungen	an Sicherheitserprobung	106
7	Erste	ellung de	es Sicher	heitsnachweises	109
	7.1	Defini	tion des S	Systems	110
		7.1.1	Einleitu	ng	111
		7.1.2	Systema	architektur	112
			7.1.2.1	Beschreibung der Systemarchitektur	113
			7.1.2.2	Definition der Schnittstellen	116
		7.1.3	Sichere	Systementwicklung	119
			7.1.3.1	Zusammenfassung der technischen Sicherheitsprinzipien	119
			7.1.3.2	Projektierung von Teilsystemen und Systemaufbau	123
	7.2	Allgen	neine Info	ormationen	124
		7.2.1	Qualität	smanagementbericht	124
		7.2.2	Sicherh	eitsmanagementbericht	124
	7.3	Techni	sche Sicl	herheitsanalyse und Umsetzung	124
		7.3.1	Einleitu	ng	125
		7.3.2	Betrieb	mit externen Einflüssen	126
			7.3.2.1	Klimatische Bedingungen	126
			7.3.2.2	Mechanische Bedingungen	126
			7.3.2.3	Höhe über Meeresspiegel	126
			7.3.2.4	Elektrische Bedingungen (nicht auf Fahrzeugen)	127
			7.3.2.5	Elektrische Bedingungen (auf Fahrzeugen)	127
			7.3.2.6	Schutz vor unberechtigtem Zutritt	127
			7.3.2.7	Erschwerte Bedingungen	127
		7.3.3	Ausfalla	auswirkungen	127
			7.3.3.1	Angabe der Fail-Safe-Prinzipien	128
			7.3.3.2	Unabhängigkeit von Betrachtungseinheiten	129
			7.3.3.3	Schutz gegen systematische Fehler	130
			7.3.3.4	Auswirkung von Einzelausfällen	130
			7.3.3.5	Auswirkung von Mehrfachausfällen	131
			7.3.3.6	Offenbarung von (Einzel-)Ausfällen	132
			7.3.3.7	Aktion nach Ausfalloffenbarung	132
		7.3.4	Nachwe	eis des korrekten funktionalen Verhaltens	132
			7.3.4.1	Erfüllung der Sicherheitsanforderungen	133
			7.3.4.2	Nachweis der korrekten Hardwarefunktionalität	135
			7.3.4.3	Nachweis der korrekten Softwarefunktionalität	136
		7.3.5	Sicherh	eitsbezogene Anwendungsbedingungen	137
			7.3.5.1	Betrieb und Instandhaltung	138
			7.3.5.2	Sicherheitsüberwachung im Betrieb	138

			7.3.5.3	Stilllegung und Entsorgung	139
		7.3.6	Sicherhe	eitserprobung	139
			7.3.6.1	Erfüllung der Systemanforderungen	139
			7.3.6.2	Ergebnisse	140
	7.4	Zusam	menfassu	ing und Schlussfolgerung	140
		7.4.1	Beziehu	ngen zu anderen Sicherheitsnachweisen	140
		7.4.2	Zusamn	nenfassung	141
8	Siche	erheitsg	utachten .		143
	8.1	Beguta	chtungsg	gegenstand	143
	8.2	Unabh	ängigkeit	t des Gutachters	143
	8.3	Durcht	führung d	ler Begutachtung	144
	8.4	Dokun	nentation	der Begutachtung	145
	8.5	Abwei	chungen	gegenüber Sicherheitsanforderungen	147
	8.6	Zulass	ung des b	petrachteten Systems	148
9	Zusa	mmenfa	assung un	nd Ausblick	149
	9.1			ung und kritische Diskussion der Ergebnisse	
	9.2	Ausbli	ck		150
A	nhang	1: Proj	ekte zur s	satellitenbasierten Ortung im Schienenverkehr	151
A	nhang	2: Beka	annte ET	CS Ausrüstung in Europa	152
A	nhang	3: Nori	nativer R	ahmen der satellitenbasierten Ortung	153
A	nhang	4: Stru	kturierun	g der Funktionen in anderen Verkehrsdomänen	154
A	nhang	5: Anfo	orderunge	en an Komponenten in Schienenfahrzeugen	155
Li	teratu	rverzeio	hnis		156
A	bbildu	ngsverz	zeichnis		169
Та	abeller	nverzeio	hnis		172

9 Zusammenfassung und Ausblick

In dieser Arbeit wurde aufbauend auf den Grundlagen der satellitenbasierten Ortung und des Schienenverkehrs eine generische Methode zur Nachweisführung und zur Zertifizierung einer bordautonomen satellitenbasierten Ortungseinheit für den Schienenverkehr unter Nutzung externer Komponenten eingeführt und angewandt. In diesem abschließenden Kapitel werden in Abschnitt 9.1 die Ergebnisse dieser Arbeit zusammengefasst und in Abschnitt 9.2 ein Ausblick auf weiterführende und vertiefende Forschungsaktivitäten gegeben.

9.1 Zusammenfassung und kritische Diskussion der Ergebnisse

Die sichere Implementierung der satellitenbasierten fahrzeugseitigen Ortung wurde bereits in einer Vielzahl vorangegangener Projekte bearbeitet, woraus verschiedene Prototypen entstanden. Diese zeigten, dass eine satellitenbasierte, sichere Ortung im Schienenverkehr generell möglich ist und einen Beitrag zu einem effizienteren Betrieb im Schienenverkehr liefern kann. In den vergangenen Projekten wurde jedoch nicht die Zertifizierung selbst untersucht. Der dargestellte Entwicklungsprozess ist somit ein bedeutender Fortschritt dieser Arbeit gegenüber dem Stand der Technik.

Die Ergebnisse dieser Arbeit wurden mit Vorgehensweisen erreicht, die auch über diese Arbeit hinaus genutzt werden können. So wurde eine Methodik zur Strukturierung von Anwendungen im Verkehrsbereich erstellt und die Sicherheitsnachweisführung generisch betrachtet. Aufbauend auf einer terminologischen Strukturierung wurde die Systemarchitektur der zu entwickelnden Ortungseinheit erstellt. Für die Funktionen der Ortungseinheit werden im Wesentlichen die aus der Strukturierung der Anwendungen von GNSS resultierenden Eigenschaften genutzt. In diese Betrachtung floss außerdem die strukturierte Darstellung der relevanten Normen ein.

In dieser Arbeit konnte von den in Abschnitt 1.3 gestellten Zielen die Erstellung eines sicherheitsgerichteten Entwicklungsprozesses, die konsistente Darstellung Systemarchitektur und der Nachweis der sicheren Funktionalität erreicht werden. Die erzielten Ergebnisse bilden eine wichtige Grundlage für die mögliche Einführung der satellitenbasierten fahrzeugseitigen Ortung mit SIL 3 auf Nebenstrecken, die keinen Aktivitäten des Fahrers bedarf. Durch den Entfall teurer streckenseitiger Einrichtungen wird eine Vielzahl von Vorteilen ermöglicht, wodurch die Wettbewerbsfähigkeit des Schienenverkehrs gestärkt werden kann. Die resultierenden Vorteile lassen sich in die Kategorien betrieblich, Instandhaltung, Sicherheit, wirtschaftlich und sozial untergliedern und sind in Tabelle 9-1 zusammengefasst.

Reisezeit

Verbesserte Zuverlässigkeit des Betriebs

Fahren durch präzises

Beschleunigen und

Bremsen

Betriebliche Vorteile	Vorteile für Instandhaltung	Sicherheitsvorteile	Wirtschaftliche Vorteile	Soziale Vorteile
Kontinuierliche Zugortung	Geringere Schäden durch Vandalismus und bspw. Witterung	Erhöhung der Sicherheit	Marktuntersuchungen	Verkürzte Schließzeit von Bahnübergängen
Höhere Flexibilität in der Disposition	Geringerer Instandhaltungsaufwand	Geringeres Risiko menschlicher Fehler	Zielkostenrechnung für Umsetzungsstrategie	Exakter Halt der Züge an Bahnsteigen
Erhöhte Streckenkapazität	Exakte Ortung von zu reparierenden Streckenabschnitten		Kosteneffizienter Betrieb	Verbesserte Information der Fahrgäste
Kompatible			Umweltfreundliches	Reduzierung der

Tabelle 9-1: Vorteile der Nutzung der satellitenbasierten Ortung im Schienenverkehr

9.2 Ausblick

Ortung als Basis

Interoperabilität

Gewisse Fernziele des Schienenverkehrs, wie bspw. das fahrerlose Fahren, sind durch eine Kombination der in der Anwendung des Funktionsaspekts dargestellten Subfunktionen der sicheren satellitenbasierten Ortung zu realisieren. Die damit verbundene Automatisierung des Schienenverkehrs würde noch viele weitere Vorteile mit sich bringen, bspw. die Reduzierung der Verantwortung des Betriebspersonals und vielfältige Kosteneinsparungen bspw. der Instandhaltungs- oder Betriebskosten, wofür jedoch hohe Anfangsinvestitionen zu tätigen sind.

Die europaweite Zertifizierung ohne nationale Besonderheiten bedarf möglicherweise über diese Arbeit hinausgehender administrativer Maßnahmen. Sie wäre jedoch hilfreich für die grenzüberschreitende, interoperable Durchführung des Schienenverkehrs. Somit wäre es wünschenswert, wenn – wie für 2016 geplant – eine europäische Behörde eine allgemein gültige Zertifizierung ausstellen könnte. Mit der 2004 gegründeten ERA sind die Voraussetzungen dafür geschaffen, jedoch liegen die entsprechenden Kompetenzen nach derzeitiger Rechtslage bei nationalen Behörden. Für eine allgemein gültige Zertifizierung in Europa wäre zunächst eine europaweite Harmonisierung der Regeln und Betriebsverfahren notwendig.